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Topics for this morning 

• Characteristics of time series (ts) 

o What is a ts? 

o Classifying ts 

o Trends 

o Seasonality (periodicity) 

 
• Formal descriptions of ts 

o Expectation, mean & variance 

o Covariance & correlation 

o Stationarity 



Topics for this morning 

• Time series models 

o Autocovariance & Autocorrelation functions 

o Correlograms 

o White noise 

o Random walks 

o Autoregressive models 

o Moving average models 

o Autoregressive moving average models 



What is a time series? 

• A time series (ts) is a set of observations 
taken sequentially in time 

• A ts can be represented as a set 

 {xt : t = 1,2,3,…,n} = {x1,x2,x3,…,xn}   

• For example, 

 {10,31,27,42,53,15} 



Example of a time series 



Classification of time series (I) 

I. By some index set 

A. Interval across real time x(t); t  [1.1,2.5] 

B. Discrete time xt 

1. Equally spaced; t = {1,2,3,4,5} 

2. Equally spaced w/ missing values; t = {1,2,4,5,6} 

3. Unequally spaced; t = {2,3,4,6,9} 



Classification of time series (II) 

II. By underlying process 

A. Discrete (eg, adults counted per minute) 

B. Continuous (eg, salinity, temperature) 



Classification of time series (III) 

III. By number of values recorded 

A. Univariate/scalar (eg, total # of fish caught) 

B. Multivariate/vector (eg, # of each spp of fish caught) 



Classification of time series (IV) 

IV. By type of values recorded 

A. Integer (eg, fish caught in 5 min trawl = 2413) 

B. Rational (eg, fraction of marked birds = 47/951) 

C. Real (eg, body mass = 10.2 g) 



Statistical analyses of time series 

• Most statistical analyses are concerned with estimating 
properties of a population from a sample 

• Time series analysis, however, presents a different 
situation 

• Although one could vary the length of an observed 
sample, it is often impossible to make multiple 
observations at a given time (eg, one cannot observe 
today’s exchange rate of SEK to USD more than once) 

• This makes conventional statistical procedures, based on 
large sample estimates, inappropriate 
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Examples of time series 

How would we describe this ts? 

flat 



Examples of time series 
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How would we describe this ts? 

“Regular” cycle 



What is a time series model? 

• A time series model for {xt} is a specification of the 
joint distributions of a sequence of random variables 
{Xt} of which {xt} is thought to be a realization. 

• For example, 

“white noise”: xt = wt and wt ~ N(0,0.1) 

autoregressive: xt = 0.8xt-1 + wt and wt ~ N(0,0.1) 



Iterative approach to model building 

Postulate general 
class of models 

Identify candidate 
model 

Estimate parameters 

Diagnostics: 
is model adequate? 

Use model for 
forecasting or control No Yes 

Also known as the  “Box-Jenkins Approach” 



Classical decomposition of time series 

• Classical decomposition of an observed time series 
is a fundamental approach in time series analysis 

• The idea is to decompose a time series {xt} into a 
trend (mt), a seasonal component (st), and a 
remainder (et) 

 xt = mt + st + et 



Expectation, mean & variance 

• The expectation (E) of a variable is its mean value 
in the population 

• E(x) ≡ mean of x = m 

• E([x - m]2) ≡ mean of squared deviations about m 

≡ variance = s2 

• Can estimate s2 from sample as 

Var(x) =
1

n-1
(xi - x )2

i=1

n

å



Covariance 

• If we have 2 variables (x, y) we can generalize 
variance 

Cov(x, y) =
1

n-1
(xi - x )(yi - y)

i=1

n

å

g(x, y) = E (x-mx )(y-my )éë ùû

• Can estimate g from sample as 

s x

2 = E (x-mx )(x-mx )[ ]
to covariance 



Graphical example of covariance 
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Correlation 

• Correlation is a dimensionless measure of the 
linear association between 2 variables x & y 

• It is simply the covariance standardized by the 
standard deviations 

Cor(x, y) =
Cov(x, y)

sd(x)sd(y)

r(x, y) =
E (x -mx )(y-my )éë ùû

s xs y

=
g(x, y)

s xs y

Î -1,1[ ]

• Can estimate g from sample as 



The ensemble & stationarity 

• Consider again the mean function for a time series: 

m(t) = E(xt) 

• The expectation is taken across an ensemble (population) 
of all possible time series 

• With only 1 sample, however, we must estimate the 
mean at each time point by the observation 

• If E(xt) is constant across time, we say the time series is 
stationary in the mean 



Stationarity of time series 

• Stationarity is a convenient assumption that allows us to 
describe the statistical properties of a time series. 

• In general, a time series is said to be stationary if there is 

1) no systematic change in mean or variance, 

2) no systematic trend, and 

3) no periodic variations or seasonality 
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Autocovariance function (ACVF) 

• For stationary ts, we can define the autocovariance 
function (ACVF) as a function of the time lag (k) 

gk = E (xt -mx )(xt+k -mx )[ ]

• Very “smooth” series have large ACVF for large k; 
“choppy” series have ACVF near 0 for small k 

ck =
1

n
(xt - x )(xt+k - x )

t=1

n-k

å

• Can estimate gk from sample as 



Autocorrelation function (ACF) 

• The autocorrelation function (ACF) is simply the ACVF 
normalized by the variance 

rk =
gk
s 2

=
gk
g0

• ACF measures the correlation of a time series against a 
time-shifted version of itself (& hence “auto”) 

• Can estimate rk from sample as 

rk =
ck

c0



Properties of the ACF 

The ACF has several important properties, including 

1) -1 ≤ rk ≤ 1, 

2)  rk = r-k (ie, it’s an “even function”), 

3)  rk of periodic function is itself periodic 

4)  rk for sum of 2 indep vars is sum of rk for each   



The correlogram 

• The common graphical output for the ACF is called 
the correlogram, and it has the following features: 

1) x-axis indicates lag (0 to k); 

2) y-axis is autocorrelation rk (-1 to 1); 

3) lag-0 correlation (r0) is always 1 (it’s a ref point); 

4) If rk = 0, then sampling distribution of rk is 
approx. normal, with var = 1/n; 

5) Thus, a 95% conf interval is given by 

±
z

1-a
2

n
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Correlogram for deterministic trend 
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Correlogram for sine wave 
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Correlogram for trend + season 
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Correlogram for random sequence 
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Correlogram for real data 
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White noise (WN) 

A time series {wt : t = 1,2,3,…,n} is discrete white noise 
if the variables w1, w2, w3, …, wn are 

1)  independent, and 

2)  identically distributed with a mean of zero 

mw = 0

WN has the following 2nd-order properties: 

gk = s 2 if k  = 0

0 if k  ¹  0

ì
í
ï

îï
rk =

1 if k  = 0

0 if k  ¹  0

ì
í
î
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Time

w
t

0 20 40 60 80 100

-3
-2

-1
0

1
2

3

0 5 10 15 20

-0
.2

0
.2

0
.6

1
.0

Lag

A
C

F

Series  tt
White noise with s = 1



Random walk (RW) 

A time series {xt : t = 1,2,3,…,n} is a random walk if 

1)  xt = xt-1 + wt, and 

2)  wt is white noise 

mw = 0

RW has the following 2nd-order properties: 

gk t( ) = ts 2 rk t( ) =
ts 2

ts 2 t + k( )s 2
=

1

1+ k
t

Random walks are NOT stationary! 



Random walk (RW) 
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The difference operator (∇) 

• Define the first difference operator as 

 

• Differences of order d are then defined by 

Ñxt = xt - xt-1

Ñd = 1-B( )
d

• So, first differencing a RW model yields WN 

xt - xt-1 =wt



Difference to remove trend/season 

• Differencing is a very simple means for removing 
a trend or seasonal effect 

• The 1st-difference removes a linear trend, a 2nd-
difference would remove a quadratic trend, etc. 

• For seasonal data, using a 1st-difference with lag 
= period removes both trend & seasonal effects 

• Pro: no parameters to estimate 

• Con: no estimate of stationary process 



Iterative approach to model building 

Postulate general 
class of models 

Identify candidate 
model 

Estimate parameters 

Diagnostics: 
is model adequate? 

Use model for 
forecasting or control No Yes 



Linear stationary models 

• Linear filters are a useful way of modeling time series 

• Here we extend those ideas to a general class of 
models call autoregressive moving average (ARMA) 



Autoregressive (AR) models 

• An autoregressive model of order p, or AR(p), 
is defined as 

xt = f1xt-1 +f2xt-2 + +fpxt-p +wt

where we assume 

1)  wt is WN, and 

2)  fp ≠ 0 for order-p process 

• Note: RW model is special case of AR(1) with f1 = 1 



The backward shift operator (B) 

• Define the backward shift operator by 

 

• Or, more generally as 

Bxt = xt-1

B
kxt = xt-k

• So, RW model can be expressed as 

xt =Bxt +wt

1-B( ) xt =wt

xt = 1-B( )
-1
wt



Stationary AR models 

• We can write out an AR(p) model using the backward 
shift notation, such that 

fp B( ) xt = 1-f1B-f2B
2 -...-fpB

p( ) xt =wt

• If we treat B as a number, we can write the 
characteristic equation as 

fp B( ) = 0

• In order to be stationary, all roots of characteristic 
equation must exceed 1 in absolute value! 



Examples of (non)stationary models 

• Consider this simple AR(1) model: 

xt = fxt-1 + wt 

(1 - fB)xt = wt 

• A random walk xt = xt-1 + wt is not stationary because 

f = 1 

f(B) = 1 – B = 0 and hence B = 1 

• However, the AR(1) model xt = 0.5xt-1 + wt is because 

f = 0.5 

f(B) = 1 – 0.5B = 0, and hence B = 2 



Examples of AR(1) processes 



Examples of AR(1) processes 



Partial autocorrelation function 

• The partial autocorrelation function (PACF) measures the 
linear correlation of a series xt and xt+k with the linear 
dependence of {xt-1,xt-2,…,xt-(k-1)} removed 

-1£ fkk £1

xk
k-1 =b1xk-1 +b2xk-2 + +bk-1x1

x0

k-1 =b1x1 +b2x2 + +bk-1xk-1

• It is defined as 



ACF & PACF for AR(3) processes 
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PACF for AR(p) processes 
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Moving average (MA) models 

• A moving average model of order q, or MA(q), 
is defined as 

xt =wt +q1wt-1 +...+qqwt-q

where wt is WN (with 0 mean) 

• It is simply the current error term plus a 
weighted sum of the q most recent error 
terms 

• Because MA processes are finite sums of 
stationary WN processes, they are themselves 
stationary 



Invertible MA models 

• We can write out an MA(q) model using the backward 
shift notation, such that 

xt = 1+q1B+qB2 +...+qqB
q( )wt = qq B( )wt

xt = 1-qB( )wt

• An MA process is invertible if it can be expressed as a 
stationary autoregressive process of infinite order 
without an error term 

• For example, an MA(1) process 

wt = 1-qB( )
-1
xt

wt = 1+qB+q2
B

2 +...( ) xt = xt +qxt-1 +q2x t-2 +...



Examples of MA(q) processes 
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Autoregressive moving average models 

• A time series is autoregressive moving average, 
or ARMA(p,q), if it is stationary and 

xt = f1xt-1 + +fpxt-p +wt +q1wt-1 + +qqwt-q

• We can write out an ARMA(p,q) model using the 
backward shift notation, such that 

fp B( ) xt = qq B( )wt

• ARMA models are stationary if all roots of f > 1 

• ARMA models are invertible if all roots of q > 1 



Examples of ARMA(p,q) processes 
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ACF for ARMA(p,q) processes 
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PACF for ARMA(p,q) processes 
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Using ACF & PACF for model ID 

ACF PACF 

AR(p) Tails off Cuts off after lag-p 

MA(q) Cuts off after lag-q Tails off 

ARMA(p,q) Tails off (after lag [q-p]) Tails off (after lag [p-q]) 



Topics for this lab 

• ts class in R 

• Plotting ts objects 

• Understand covariance & correlation 

• Examine some simple ts models 

• Use diff() for trend/season removal 

• Examine properties via acf() & pacf() 

• Examine AR(p) models 

• Examine MA(q) models 

• ARMA(p,q) models via ‘arima.sim()’ 





Linear filtering of time series 

• Beginning with the trend (mt), we need a 
means for extracting a “signal” 

• A common method is to use linear filters 

mt = lixt+i
i=-¥

¥

å

• For example, moving averages with equal weights 

(FYI, this is what Excel does) mt =
1

2a+1
xt+i

i=-a

a

å



Example of linear filtering 
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Linear filtering of time series 

• Consider case where season is based on 12 months 
& ts begins in January (t=1) 

• Monthly averages over year will result in t = 6.5 for 
mt (which is not good) 

• One trick is to average (1) the average of Jan-Dec & 
(2) the average of Feb-Jan  

mt =
1
2 xt-6 + xt-5 + + xt-1 + xt + xt+1 + + xt+5 + 1

2 xt+6

12



Example of linear filtering 
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